Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Int ; 175: 107941, 2023 05.
Article in English | MEDLINE | ID: covidwho-2311831

ABSTRACT

With the Chinese government revising ambient air quality standards and strengthening the monitoring and management of pollutants such as PM2.5, the concentrations of air pollutants in China have gradually decreased in recent years. Meanwhile, the strong control measures taken by the Chinese government in the face of COVID-19 in 2020 have an extremely profound impact on the reduction of pollutants in China. Therefore, investigations of pollutant concentration changes in China before and after COVID-19 outbreak are very necessary and concerning, but the number of monitoring stations is very limited, making it difficult to conduct a high spatial density investigation. In this study, we construct a modern deep learning model based on multi-source data, which includes remotely sensed AOD data products, other reanalysis element data, and ground monitoring station data. Combining satellite remote sensing techniques, we finally realize a high spital density PM2.5 concentration change investigation method, and analyze the seasonal and annual, the spatial and temporal characteristics of PM2.5 concentrations in Mid-Eastern China from 2016 to 2021 and the impact of epidemic closure and control measures on regional and provincial PM2.5 concentrations. We find that PM2.5 concentrations in Mid-Eastern China during these years is mainly characterized by "north-south superiority and central inferiority", seasonal differences are evident, with the highest in winter, the second highest in autumn and the lowest in summer, and a gradual decrease in overall concentration during the year. According to our experimental results, the annual average PM2.5 concentration decreases by 3.07 % in 2020, and decreases by 24.53 % during the shutdown period, which is probably caused by China's epidemic control measures. At the same time, some provinces with a large share of secondary industry see PM2.5 concentrations drop by more than 30 %. By 2021, PM2.5 concentrations rebound slightly, rising by 10 % in most provinces.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Particulate Matter/analysis , Environmental Monitoring/methods , COVID-19/epidemiology , Air Pollutants/analysis , Air Pollution/analysis , China/epidemiology , Disease Outbreaks
2.
J Med Internet Res ; 22(11): e23128, 2020 11 11.
Article in English | MEDLINE | ID: covidwho-976118

ABSTRACT

BACKGROUND: Patients with COVID-19 in the intensive care unit (ICU) have a high mortality rate, and methods to assess patients' prognosis early and administer precise treatment are of great significance. OBJECTIVE: The aim of this study was to use machine learning to construct a model for the analysis of risk factors and prediction of mortality among ICU patients with COVID-19. METHODS: In this study, 123 patients with COVID-19 in the ICU of Vulcan Hill Hospital were retrospectively selected from the database, and the data were randomly divided into a training data set (n=98) and test data set (n=25) with a 4:1 ratio. Significance tests, correlation analysis, and factor analysis were used to screen 100 potential risk factors individually. Conventional logistic regression methods and four machine learning algorithms were used to construct the risk prediction model for the prognosis of patients with COVID-19 in the ICU. The performance of these machine learning models was measured by the area under the receiver operating characteristic curve (AUC). Interpretation and evaluation of the risk prediction model were performed using calibration curves, SHapley Additive exPlanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), etc, to ensure its stability and reliability. The outcome was based on the ICU deaths recorded from the database. RESULTS: Layer-by-layer screening of 100 potential risk factors finally revealed 8 important risk factors that were included in the risk prediction model: lymphocyte percentage, prothrombin time, lactate dehydrogenase, total bilirubin, eosinophil percentage, creatinine, neutrophil percentage, and albumin level. Finally, an eXtreme Gradient Boosting (XGBoost) model established with the 8 important risk factors showed the best recognition ability in the training set of 5-fold cross validation (AUC=0.86) and the verification queue (AUC=0.92). The calibration curve showed that the risk predicted by the model was in good agreement with the actual risk. In addition, using the SHAP and LIME algorithms, feature interpretation and sample prediction interpretation algorithms of the XGBoost black box model were implemented. Additionally, the model was translated into a web-based risk calculator that is freely available for public usage. CONCLUSIONS: The 8-factor XGBoost model predicts risk of death in ICU patients with COVID-19 well; it initially demonstrates stability and can be used effectively to predict COVID-19 prognosis in ICU patients.


Subject(s)
COVID-19/epidemiology , Machine Learning/standards , Algorithms , Female , Humans , Intensive Care Units , Male , Prognosis , Reproducibility of Results , Retrospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL